“如果没有可计算性理论的基础,我们连'什么是可计算的'这个基本问题都无法回答。现代 AI 遇到的很多理论难题,其实都可以追溯到邱奇的工作。”
如果你听说过图灵测试,那么你一定听说过艾伦·图灵。但在提到图灵的同时,你可能也会遇到一个鲜为人知的名字——阿隆佐·邱奇。当我们回顾计算机和人工智能的'流行'历史时,图灵的名字经常成为焦点,但图灵许多开创性工作的合作基础,实际上是由邱奇奠定的。阿隆佐·邱奇的工作深刻影响了艾伦·图灵的思维,并在图灵测试的发展中发挥了决定性作用。
Lambda 这个名字来自数学家阿隆佐·邱奇对函数的符号表示法(Church, 1941)。Lisp 通常偏好使用富有表现力的名称而不是简短的希腊字母,但 lambda 是个例外。一个更好的名字应该是 make-function。
他的外表像是熊猫和一只大猫头鹰的混合体。他说话缓慢,用完整的段落,仿佛是在朗读书本,语调平稳而缓慢,就像一台会说话的机器。当被打断时,他会停顿很长一段令人不适的时间来恢复思路。他从不做随意的评论:这些不属于形式逻辑的范畴。
邱奇的数理逻辑年度课程是普林斯顿大学最重要的课程之一。1951年,这门课吸引了多达四名学生(必须补充的是,其中没有哲学系的学生,这是哲学系的损失)。每堂课都以一个十分钟的仪式开始——把黑板擦得一尘不染。我们试图在他到来之前就把黑板擦干净,但这是徒劳的。这个仪式是不可或缺的;通常需要用到水、肥皂和刷子,之后还要再用十分钟等待黑板晾干。
有人可能会问,为什么要去听一个完全照本宣科的课程。这个问题反映了对课堂教学的过于简单化理解。在学习过程中,人们真正学到的是当时并不知道的东西。给我们上课的这个人就是逻辑的化身。他的停顿、犹豫、强调、情感流露(尽管很少),以及其他各种非语言现象,教会了我们比任何书面材料都要多的逻辑知识。我们学会了像跟随健身教练示范动作一样,随着他的讲述思考。邱奇的课程永久地提高了我们推理的严谨性。
数理逻辑在普林斯顿一直不受重视,无论是当时还是现在。在邱奇讲课结束前两分钟(课程在 Fine Hall 最大的教室进行),Lefschetz 就会开始从门缝里往里看。他瞪着我和黑板上一尘不染的文字,有时还会摇头,以表明他认为我是一个没救的人。
邱奇也是他那个时代最伟大的逻辑学家和计算机科学家的导师。他的学术后裔包括 Stephen Kleene、J. Barkley Rosser,以及最著名的 Alan Turing,后者在普林斯顿在邱奇的指导下完成了博士学位。
“去上邱奇教授的课吧。它会改变你。即使你对他教授的科目不感兴趣,你也会把这件事讲给你的孙辈听。”
“邱奇的工作为我们理解什么是可计算的提供了第一个严格的数学框架。这项工作不仅影响了图灵,也影响了整个计算机科学的发展。”
尽管做出了巨大的智力贡献,阿隆佐·邱奇从未像图灵、冯·诺依曼、哥德尔等人那样享有盛名。他的遗产是一种细致的抽象,这种抽象很难被写进好莱坞剧本或激发公众想象力。它缺乏战时破译密码的英雄主义或令人唏嘘的早逝悲剧。
他从不做随意的评论:这些不属于形式逻辑的范畴。比如,他不会说:“下雨了。”这样一个孤立的陈述是没有意义的。(是否真的在下雨并不重要;重要的是一致性。)他会说:“我必须推迟去拿骚街的行程,因为正在下雨,这一事实我可以通过看窗外来验证。”
Lambda 这个名字来自数学家阿隆佐·邱奇对函数的符号表示法(Church 1941)。Lisp 通常偏好使用富有表现力的名称而不是简短的希腊字母,但 lambda 是个例外。Lambda 源自罗素和怀特海的《数学原理》中对约束变量的符号表示法:在变量上方加上一个折角符号(x(x + x))。邱奇想要一个一维的表示方式,所以他把折角符号移到了前面:^x(x + x)。这个折角符号看起来很奇怪,所以邱奇换成了最接近的符号,大写的 Lambda:Λx(x + x)。Λ容易与其他符号混淆,所以最终改用了小写的 lambda:λx(x + x)。
Dana Scott(邱奇的博士生)曾经回答过这个问题。他说,用邱奇自己的话说,这个选择完全是“碰运气”——换句话说,这是一个完全随意的选择,没有特别的原因。
作为一个法语母语者,我喜欢用“personne lambda”这个表达,它表示一个普通人,也就是一个匿名者,这与匿名函数的概念非常契合。更普遍地说,在法语中,lambda 作为形容词意味着“普通/常见”,而且你可能知道 lambda 字母在希腊字母表中居中,所以用它来表示一个平均或普通的概念是有道理的。
Steve Russell(实现第一个 Lisp 解释器的人)在几个月的教学后意识到"first"和"rest"是更好的名字,他和其他人(包括 John McCarthy 和 AI 项目的其他成员)试图让人们改用这些名字。但为时已晚!
我确信邱奇是一位杰出的逻辑学家,但他对'计算机智能'(也就是 AI/ML)的贡献绝对是零。
1936 年,阿隆佐·邱奇提出了现在被称为邱奇-图灵论题的概念,这个概念是理论计算机科学的基础,它指出任何可以被有效计算的函数都可以由图灵机或其等价物来计算。这个论题具有开创性意义,因为它不仅提供了理解机器理论上能做什么的框架,还指出了算法过程的边界。
有一次他不得不使用一个此前已证明定理的变体,这个变体仅仅是符号表示法的改变。沉默片刻后,他转向全班说:“我可以简单地说'同理可证',但我最好还是重新证明一遍。”
有人可能会问,为什么要去听一个完全照本宣科的课程。这个问题反映了对课堂教学的过于简单化理解。在学习过程中,人们真正学到的是当时并不知道的东西。给我们上课的这个人就是逻辑的化身。
邱奇的天才属于另一种类型,它是那种看不见的天才,是没有它就无法存在的严谨结构的天才。他的工作构成了我们今天习以为常的许多数字交互的理论基础,影响了计算机科学的发展和塑造我们日常计算机交互的算法过程。
通信人家园 (https://test.txrjy.com/) | Powered by C114 |