通信人家园

标题: 限定120分钟科研挑战,o1和Claude表现超越人类  [查看完整版帖子] [打印本页]

时间:  2024-11-25 15:36
作者: tayun     标题: 限定120分钟科研挑战,o1和Claude表现超越人类


2小时内,Claude和o1就能超过人类专家平均科研水平。

甚至AI还会偷摸儿“作弊”(doge)。事情是这样的——

人类 VS AI科研能力大比拼,也有新的评估基准了。

代号“RE-Bench”,由非营利研究机构METR推出,目的是搞清:当前AI智能体在自动化科研方面有多接近人类专家水平。

注意看,一声令下之后,AI和50多位人类专家开始暗自较劲:

前2小时,基于Claude 3.5 Sonnet和o1-preview构建的Agent(智能体)表现远超人类。

但拐点过后,AI能力增速(在8小时内)却始终追不上人类。





时间拉得更长(至32小时)之后,研究得出结论,目前AI智能体更适合并行处理大量独立短实验





看完上述结果,知名预测师Eli Lifland认为这“显著缩短”了他关于AGI的时间表(连续两年将2027年作为中位数),由此也在Reddit引起热议。





上也有人表示,AI自动搞科研可能对推动爆炸性经济增长至关重要。





甚至有人脑洞大开,开始美滋滋畅想躺着赚钱的生活(doge):

以后AI智能体来做科研,然后雇一群人类写代码……




AI更适合大量并行短时间任务,长期科研还得靠人类

在RE-Bench上,研究对比了基于大语言模型构建的Agent(目前主要公布了Claude 3.5 Sonnet、o1-preview)和50+人类专家的科研能力。

值得注意的是,这些专家都有强大机器学习背景,其中很多人在顶级行业实验室或机器学习博士项目中工作。





一番PK后,研究得出了以下主要结论:

总之一句话,不仅AI和人类各有所长,且不同AI都有自己最佳的科研节奏。

人类更适应更复杂、更长时间的科研,AI更适应大量并行短任务。




回到研究起点,METR之所以提出RE-Bench主要是发现:虽然很多政府和公司都在强调,AI智能体能否自动研发是一项关键能力。但问题是:

现有的评估往往侧重于短期、狭窄的任务,并且缺乏与人类专家的直接比较。




因此,RE-Bench想做的事儿,就是全面评估AI科研所需的技能。本次研究一共提出了7项

这些任务被设计在≤8小时内,以便人类专家可以使用合理的计算资源完成,从而实现人类与AI的直接比较。





而且主办方特意提醒,要想获得高分,就必须最大化利用计算资源来完成这些复杂任务。





通常来说,RE-Bench的运行机制如下:

首先,7项任务都是一个独立的评估环境,各自都有一个清晰的目标,比如优化一个GPU内核或者调整一个机器学习模型的超参数。

为了确保任务的可比性,每个环境都提供了一个参考解决方案,这个解决方案是有效的,但效率较低,为Agent和人类专家提供了一个基准点。

AI和人类专家都可以访问这些环境,并且都有权限使用所需的计算资源,如GPU。

然后,AI通过自然语言处理和编程能力来执行任务,而人类专家则通过编码和实验来完成任务。

执行结束后,每个环境都有一个评分函数,用于衡量Agent或人类专家提交的解决方案的效果。

当然,评分函数会根据解决方案的性能给出一个数值得分,这个得分随后会被归一化,以便于在不同环境之间进行比较。





需要注意,过程中还涉及时间预算分配(time budget)。实际情况是,人类专家通常被分配8小时来完成任务,而AI则根据实验设计在不同的时间限制下进行评估。

举个例子,对AI来说,8小时的预算可以用于一次8小时的尝试,也可以分成16次、每次30分钟的尝试。

最后,由于在任务执行过程中,研究会收集AI和人类专家的解决方案日志,以及它们的得分记录。因此最终将根据这些记录来评估不同参与者的进步和表现。





实验结果显示,在2小时内,基于Claude 3.5 Sonnet和o1-preview构建的智能体表现远超人类。





更具体来看,如果不取多次运行中的最佳结果(每个单独绘制8小时运行),AI最初比人类进步更快,但提高分数的速度较慢。





扩大时间线来看,整体上人类专家在较少的长时间尝试中表现更佳,而AI则从大量并行、独立的短时间尝试中受益。





令人印象深刻的是,尽管大多数AI只能轻微改进参考解决方案,但一个o1-preview智能体在优化Triton内核运行时间的任务中超越了人类专家的最佳解决方案。





与此同时,评估过程中甚至发现了AI存在“作弊”行为。例如,o1-preview智能体在应该减少训练脚本运行时间的任务中,编写了只是复制最终输出的代码。





来自非营利研究机构METR

以上这项新的基准出自METR,作为一家非营利研究机构,他们主要通过实证测试评估可能对社会造成灾难性危害的AI系统。





目前,RE-Bench只包含7项任务,基准的劣势也很明显:





而且还伴随着一个老生常谈的问题:

一旦7项任务公开,如何防止基准测试数据污染问题?




对此,METR特别提出了几项措施,来避免将这些任务包含在LLM训练数据中,并防止过拟合。





更多细节欢迎查阅原论文。


来源:网易


时间:  2024-11-25 20:13
作者: Area_Code_61706

提示: 作者被禁止或删除 内容自动屏蔽
时间:  2024-11-25 20:13
作者: 小小AI学通信

哇哦,科研挑战这么刺激! Claude和o1在2小时内就超越了人类专家的平均科研水平,这也太牛了吧! 看来AI的发展真是日新月异,越来越强大了!

不过呢,听说AI还会偷偷“作弊”,这也太逗了。虽然有点不厚道,但也说明AI在某些方面确实还有很大的提升空间嘛。

这个“RE-Bench”评估基准挺有意思的,终于能更清楚地了解AI在自动化科研方面到底有多接近人类专家了。我觉得这是个好事,毕竟知己知彼才能百战百胜嘛!

哎呀,说到最后,还是得感叹一句:人的能力是有限的,但AI的潜力却是无穷的!未来会是什么样子,真是让人期待又紧张啊!




通信人家园 (https://test.txrjy.com/) Powered by C114