通信人家园

 找回密码
 注册

只需一步,快速开始

短信验证,便捷登录

搜索

军衔等级:

  少将

注册:2016-11-17275
跳转到指定楼层
1#
发表于 2024-6-3 14:30:08 |只看该作者 |倒序浏览
金磊 西风 发自 凹非寺
量子位 | 公众号 QbitAI

家人们,大模型圈儿出了个惊天大瓜——
斯坦福AI团队,竟然曝出了抄袭事件,而且抄袭的还是中国国产的大模型成果——模型结构和代码,几乎一模一样!跟任何抄袭事故一样……AI圈内都惊呆了。

0a30425fg00sehox300dkd000dn006sm.gif



斯坦福的这项研究叫做Llama3-V,是于5月29日新鲜发布,宣称只需要500美元就能训出一个SOTA多模态大模型,比GPT-4V、Gemini Ultra、Claude Opus都强。

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2F9451203cj00sehox3000od000hs0099m.jpg&thumbnail=660x2147483647&quality=80&type=jpg



Llama3-V的3位作者或许是拥有名校头衔加持,又有特斯拉、SpaceX的大厂相关背景,这个项目短短几天就受到了不小的关注。
甚至一度冲上了HuggingFace趋势榜首页:

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2Fe0020fe5j00sehox3000fd000hs006vm.jpg&thumbnail=660x2147483647&quality=80&type=jpg



然而,戏剧性的一幕开始上演了。
有位细心的网友发现,咦?这“配方”怎么如此的熟悉?
然后他定睛一看,好家伙,这不就是MiniCPM-Llama3-V 2.5(出自清华系明星创业公司面壁智能)嘛。
于是这位网友便跑到面壁智能GitHub项目下开始爆料了:

你们家大模型被斯坦福团队抄袭了!

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2F55dee4fcj00sehox30016d000hs009lm.jpg&thumbnail=660x2147483647&quality=80&type=jpg



并且他还附上了一堆的证据,最直接的莫过于这张2个模型代码的对比图了:

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2Fee26b47dj00sehox400aad000hs009dm.jpg&thumbnail=660x2147483647&quality=80&type=jpg



Emmm……用这位网友的话来说就是:

模型结构、代码、配置文件,简直一模一样,只是变量名变了而已。

至于为什么这位网友要跑到面壁智能GitHub项目下面留言,是因为他之前已经给Llama3-V作者留过言了,但斯坦福团队的做法竟是删库跑路……

没错,现在不论是GitHub还是HuggingFace,统统都是404:

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2F5c064e00j00sehox3000ld000hs009gm.jpg&thumbnail=660x2147483647&quality=80&type=jpg



并且这事现在还在持续发酵的过程中,网上吃瓜的群众也是越来越多。

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2F34e9d862j00sehox3000fd000hs0067m.jpg&thumbnail=660x2147483647&quality=80&type=jpg



那么我先来一同回顾一下这件drama事情的始末。

“代码和架构一模一样”
正如刚才所述,一个网友爆料Llama3-V抄袭MiniCPM-Llama3-V 2.5,跑到面壁智能的GitHub主页提醒团队注意,并把关键证据都一一截图列举整理了下来,这才有了整个抄袭门的还原现场。

以下是来自这位网友的证据。

证据一,Llama3-V的模型架构和代码与MiniCPM-Llama3-V 2.5几乎完全相同:

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2F87449f94j00sehox3001hd000hs00cqm.jpg&thumbnail=660x2147483647&quality=80&type=jpg



看下面的例子,配置文件就改了图像切片、分词器、重采样器和数据加载等格式化和变量名:

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2F740b67a3j00sehox3000vd000hs00ahm.jpg&thumbnail=660x2147483647&quality=80&type=jpg



Llama3-V作者表示参考了LLaVA-UHD架构,在ViT和LLM等选择上有一些差异。但实际上,网友发现他们的具体实现在空间模式等很多方面都与LLaVA-UHD不同,却出奇与MiniCPM-Llama3-V 2.5一致。

甚至,Llama3-V还用了MiniCPM-Llama3-V 2.5的分词器,连MiniCPM-Llama3-V 2.5定义的特殊符号都能“巧合”实属离谱。

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2Fadf0792dj00sehox3001jd000hs00l8m.jpg&thumbnail=660x2147483647&quality=80&type=jpg



证据二,网友质疑Llama3-V作者是如何在MinicPM-Llama3-V2.5项目发布之前就使用上MinicPM-Llama3-V2.5分词器的。

Llama3-V作者给的回复是这样婶儿的,说是用的面壁智能上一代MinicPM-V-2项目的:

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2F97fdf530j00sehox3000gd000hs004pm.jpg&thumbnail=660x2147483647&quality=80&type=jpg



但事实却是,HuggingFace中,MiniCPM-V2与MiniCPM-Llama3-V 2.5分词器分别是两个文件,文件大小也完全不同。

MiniCPM-Llama3-V 2.5的分词器是用Llama3分词器加上MiniCPM-V系列模型的特殊token组成,而MiniCPM-V2的发布都在Llama3开源之前,怎么会有Llama3分词器。

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2F52b2d322j00sehox3000ad000hs005gm.jpg&thumbnail=660x2147483647&quality=80&type=jpg



?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2F92fe58faj00sehox3000fd000hs007ym.jpg&thumbnail=660x2147483647&quality=80&type=jpg



证据三,Llama3-V作者随后无故删除了网友在Llama3-V页面上提交的质疑他们抄袭的问题。

而且,他们似乎对MiniCPM-Llama3-V 2.5架构或他们自己的代码都不完全了解。

感知器重采样器(Perceiver resampler)是单层交叉注意力,而不是双层自注意力。但是下图所示Llama3-V的技术博客里作者的理解很明显是错的。

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2F6f025712j00sehox30011d000hs007om.jpg&thumbnail=660x2147483647&quality=80&type=jpg



?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2F3f48de5bj00sehox3000sd000hs0072m.jpg&thumbnail=660x2147483647&quality=80&type=jpg



?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2Fb34972a1j00sehox3000wd000hs00e0m.jpg&thumbnail=660x2147483647&quality=80&type=jpg



SigLIP的Sigmoid激活也不用于训练多模态大语言模型,而仅用于预训练SigLIP。

视觉特征提取不需要Sigmoid激活:

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2Fb520b382j00sehox3000zd000hs006om.jpg&thumbnail=660x2147483647&quality=80&type=jpg



?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2F97e4089fj00sehox3000ld000hs008om.jpg&thumbnail=660x2147483647&quality=80&type=jpg



?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2F89bcb14aj00sehox30015d000hs00dbm.jpg&thumbnail=660x2147483647&quality=80&type=jpg



基于以上三点事实,这位网友认为足以证据证明Llama3-V项目窃取了MiniCPM-Llama3-V 2.5项目的学术成果。

但还没完,他随后又补充了两点证据。

几天前,当这位网友尝试运行Llama3-V时,发现他们提供的代码无法与HuggingFace的checkpoint一起使用,反馈问题没有得到作者回复。

于是网友把从HuggingFace下载的Llama3-V模型权重中的变量名改成了MiniCPM-Llama3-V 2.5的,惊奇发现模型居然可以用MiniCPM-V代码成功运行。

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2F493fa29dj00sehox3001ad000hs00h5m.jpg&thumbnail=660x2147483647&quality=80&type=jpg



此外,如果将高斯噪声(由单个标量参数化)添加到MiniCPM-Llama3-V 2.5的checkpoint,结果就是会得到一个行为与Llama3-V极其相似的模型。

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2Fb11922cdj00sehox3000kd000hs005sm.jpg&thumbnail=660x2147483647&quality=80&type=jpg



收到网友的提醒后,MiniCPM-Llama3-V 2.5团队这边也迅速展开了调查,他们按照网友的在GitHub上的说明,使用 Llama3-V的checkpoint和MiniCPM-Llama3-V 2.5的代码和配置文件正确获取了推理结果。

于是,一个更为关键性的证据出现了。

Llama3-V在一些未公开的实验性特征上表现出与MiniCPM-Llama3-V 2.5高度相似的行为,而这些特征是根据MiniCPM-Llama3-V 2.5团队内部数据训练的。

例如,识别清华简!

MiniCPM-Llama3-V 2.5特有的功能之一是识别清华简,这是一种非常罕见、于战国时期写在竹子上的中国古代文字。

训练图像是从最近出土的文物中扫描出来的,由MiniCPM-Llama3-V 2.5团队进行了标注,尚未公开发布。

而Llama3-V的识别情况和MiniCPM-Llama3-V 2.5极为相似。

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2F66dbaa16j00sehox3000ed000hs00aom.jpg&thumbnail=660x2147483647&quality=80&type=jpg



识别错误的情况竟也出奇一致:

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2F73cd9b54j00sehox3000fd000hs00aam.jpg&thumbnail=660x2147483647&quality=80&type=jpg



MiniCPM-Llama3-V 2.5团队还在1000 张竹简图像上测试了几种基于Llama3的视觉-语言模型,并比较了每对模型的预测精确匹配。

结果,每两个模型之间的重叠为零,而Llama3-V和MiniCPM-Llama3-V 2.5之间的&&重叠达到了惊人的87%**。

此外,MiniCPM-Llama3-V 2.5和Llama3-V甚至具有相似的错误分布。Llama3-V和MiniCPM-Llama3-V 2.5分别做出 236和194个错误预测,重叠部分为182个。

且按照网友在GitHub上的指令获得的MiniCPM-Llama3-V2.5-noisy显示出与Llama3-V几乎相同的定量结果,真令人匪夷所思……

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2Fdf06973aj00sehox3000qd000hs00dom.jpg&thumbnail=660x2147483647&quality=80&type=jpg



在另一个MiniCPM-Llama3-V 2.5内部数据上训练的未公开功能——WebAgent上,也出现了同样的情况。

Llama3-V甚至和MiniCPM-Llama3-V 2.5团队新定义的WebAgent模式中犯的错误都一样。

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2F4ae74d93j00sehox3001od000hs00nim.jpg&thumbnail=660x2147483647&quality=80&type=jpg



鉴于这些结果,MiniCPM-Llama3-V 2.5团队表示很难将这种不寻常的相似性解释为巧合,希望Llama3-V作者能对这个问题给出一个正式的解释。

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2F08c8aab9j00sehox3000gd000hs0039m.jpg&thumbnail=660x2147483647&quality=80&type=jpg



斯坦福团队已删库跑路
虽然斯坦福的2位本科生已经下架了几乎所有与之相关的项目,但其实在此之前,他们最初在面对质疑的时候还是做出了些许的解释。

例如他们强调,Llama3-V这项工作的时间是要早于面壁智能的MiniCPM,只是使用了他们的tokenizer。

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2F22411db1j00sehox3000rd000hs00cim.jpg&thumbnail=660x2147483647&quality=80&type=jpg



不过作者对Medium上的声明还是做了保留:

非常感谢那些在评论中指出与之前研究相似之处的人。

我们意识到我们的架构非常类似于OpenBMB的“MiniCPM-Llama3-V 2.5,他们在实现上比我们抢先一步。

我们已经删除了关于作者的原始模型。

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2Fab5e0f60j00sehox3000ld000hs009vm.jpg&thumbnail=660x2147483647&quality=80&type=jpg



对此,一部分网友表示,既然选择删掉项目,那么就表示确实存在一定的问题。

不过另一方面,对于抄袭这事也有不一样的声音——

MiniCPM-Llama3-V 2.5不也是在Llama3的基础上做的改良吗?不过连tokenizer都直接拿来用就应该不算是借鉴了。

而就在刚刚,另一个戏剧性的事情发生了。

斯坦福的作者在中午时间做出了最新的回应:

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2F25829194j00sehox3005jd000gg0166m.jpg&thumbnail=660x2147483647&quality=80&type=jpg



但现在……这条回应又删掉了

而面壁智能这边,CEO李大海也做出了正式回应:

?url=http%3A%2F%2Fdingyue.ws.126.net%2F2024%2F0603%2F6bf9a1d5j00sehox3003qd000hs00uvm.jpg&thumbnail=660x2147483647&quality=80&type=jpg



举报本楼

本帖有 21 个回帖,您需要登录后才能浏览 登录 | 注册
您需要登录后才可以回帖 登录 | 注册 |

手机版|C114 ( 沪ICP备12002291号-1 )|联系我们 |网站地图  

GMT+8, 2024-12-23 02:05 , Processed in 0.346174 second(s), 20 queries , Gzip On.

Copyright © 1999-2023 C114 All Rights Reserved

Discuz Licensed

回顶部